TrustGraph Librarian API
This API provides document library management for TrustGraph. It handles document storage, metadata management, and processing orchestration using hybrid storage (MinIO for content, Cassandra for metadata) with multi-user support.
Request/response
Request
The request contains the following fields:
operation
: The operation to perform (see operations below)document_id
: Document identifier (for document operations)document_metadata
: Document metadata object (for add/update operations)content
: Document content as base64-encoded bytes (for add operations)processing_id
: Processing job identifier (for processing operations)processing_metadata
: Processing metadata object (for add-processing)user
: User identifier (required for most operations)collection
: Collection filter (optional for list operations)criteria
: Query criteria array (for filtering operations)
Response
The response contains the following fields:
error
: Error information if operation failsdocument_metadata
: Single document metadata (for get operations)content
: Document content as base64-encoded bytes (for get-content)document_metadatas
: Array of document metadata (for list operations)processing_metadatas
: Array of processing metadata (for list-processing)
Document Operations
ADD-DOCUMENT - Add Document to Library
Request:
{
"operation": "add-document",
"document_metadata": {
"id": "doc-123",
"time": 1640995200000,
"kind": "application/pdf",
"title": "Research Paper",
"comments": "Important research findings",
"user": "alice",
"tags": ["research", "ai", "machine-learning"],
"metadata": [
{
"subject": "doc-123",
"predicate": "dc:creator",
"object": "Dr. Smith"
}
]
},
"content": "JVBERi0xLjQKMSAwIG9iago8PAovVHlwZSAvQ2F0YWxvZwovUGFnZXMgMiAwIFIKPj4KZW5kb2JqCg=="
}
Response:
{}
GET-DOCUMENT-METADATA - Get Document Metadata
Request:
{
"operation": "get-document-metadata",
"document_id": "doc-123",
"user": "alice"
}
Response:
{
"document_metadata": {
"id": "doc-123",
"time": 1640995200000,
"kind": "application/pdf",
"title": "Research Paper",
"comments": "Important research findings",
"user": "alice",
"tags": ["research", "ai", "machine-learning"],
"metadata": [
{
"subject": "doc-123",
"predicate": "dc:creator",
"object": "Dr. Smith"
}
]
}
}
GET-DOCUMENT-CONTENT - Get Document Content
Request:
{
"operation": "get-document-content",
"document_id": "doc-123",
"user": "alice"
}
Response:
{
"content": "JVBERi0xLjQKMSAwIG9iago8PAovVHlwZSAvQ2F0YWxvZwovUGFnZXMgMiAwIFIKPj4KZW5kb2JqCg=="
}
LIST-DOCUMENTS - List User’s Documents
Request:
{
"operation": "list-documents",
"user": "alice",
"collection": "research"
}
Response:
{
"document_metadatas": [
{
"id": "doc-123",
"time": 1640995200000,
"kind": "application/pdf",
"title": "Research Paper",
"comments": "Important research findings",
"user": "alice",
"tags": ["research", "ai"]
},
{
"id": "doc-124",
"time": 1640995300000,
"kind": "text/plain",
"title": "Meeting Notes",
"comments": "Team meeting discussion",
"user": "alice",
"tags": ["meeting", "notes"]
}
]
}
UPDATE-DOCUMENT - Update Document Metadata
Request:
{
"operation": "update-document",
"document_metadata": {
"id": "doc-123",
"title": "Updated Research Paper",
"comments": "Updated findings and conclusions",
"user": "alice",
"tags": ["research", "ai", "machine-learning", "updated"]
}
}
Response:
{}
REMOVE-DOCUMENT - Remove Document
Request:
{
"operation": "remove-document",
"document_id": "doc-123",
"user": "alice"
}
Response:
{}
Processing Operations
ADD-PROCESSING - Start Document Processing
Request:
{
"operation": "add-processing",
"processing_metadata": {
"id": "proc-456",
"document_id": "doc-123",
"time": 1640995400000,
"flow": "pdf-extraction",
"user": "alice",
"collection": "research",
"tags": ["extraction", "nlp"]
}
}
Response:
{}
LIST-PROCESSING - List Processing Jobs
Request:
{
"operation": "list-processing",
"user": "alice",
"collection": "research"
}
Response:
{
"processing_metadatas": [
{
"id": "proc-456",
"document_id": "doc-123",
"time": 1640995400000,
"flow": "pdf-extraction",
"user": "alice",
"collection": "research",
"tags": ["extraction", "nlp"]
}
]
}
REMOVE-PROCESSING - Stop Processing Job
Request:
{
"operation": "remove-processing",
"processing_id": "proc-456",
"user": "alice"
}
Response:
{}
REST service
The REST service is available at /api/v1/librarian
and accepts the above request formats.
Websocket
Requests have a request
object containing the operation fields. Responses have a response
object containing the response fields.
Request:
{
"id": "unique-request-id",
"service": "librarian",
"request": {
"operation": "list-documents",
"user": "alice"
}
}
Response:
{
"id": "unique-request-id",
"response": {
"document_metadatas": [...]
},
"complete": true
}
Pulsar
The Pulsar schema for the Librarian API is defined in Python code here:
https://github.com/trustgraph-ai/trustgraph/blob/master/trustgraph-base/trustgraph/schema/library.py
Default request queue: non-persistent://tg/request/librarian
Default response queue: non-persistent://tg/response/librarian
Request schema: trustgraph.schema.LibrarianRequest
Response schema: trustgraph.schema.LibrarianResponse
Python SDK
The Python SDK provides convenient access to the Librarian API:
from trustgraph.api.library import LibrarianClient
client = LibrarianClient()
# Add a document
with open("document.pdf", "rb") as f:
content = f.read()
await client.add_document(
doc_id="doc-123",
title="Research Paper",
content=content,
user="alice",
tags=["research", "ai"]
)
# Get document metadata
metadata = await client.get_document_metadata("doc-123", "alice")
# List documents
documents = await client.list_documents("alice", collection="research")
# Start processing
await client.add_processing(
processing_id="proc-456",
document_id="doc-123",
flow="pdf-extraction",
user="alice"
)
Features
- Hybrid Storage: MinIO for content, Cassandra for metadata
- Multi-user Support: User-based document ownership and access control
- Rich Metadata: RDF-style metadata triples and tagging system
- Processing Integration: Automatic triggering of document processing workflows
- Content Types: Support for multiple document formats (PDF, text, etc.)
- Collection Management: Optional document grouping by collection
- Metadata Search: Query documents by metadata criteria
Use Cases
- Document Management: Store and organize documents with rich metadata
- Knowledge Extraction: Process documents to extract structured knowledge
- Research Libraries: Manage collections of research papers and documents
- Content Processing: Orchestrate document processing workflows
- Multi-tenant Systems: Support multiple users with isolated document libraries