Managing Flows Using CLI
Use command-line tools to create, manage, and configure processing flows
Intermediate
10 min
- TrustGraph instance running
- Familiarity with flow concepts
Use CLI tools to list, create, start, and stop processing flows for different use cases.
This guide covers flow management using command-line tools instead of the Workbench.
New to flows? Read the Introduction to Flows guide first to understand what flows are, how they work, and the concept of flow blueprints.
This guide demonstrates:
- Listing available flows and blueprints
- Creating flows from blueprints
- Starting and stopping flows
- Viewing flow configuration
Step-by-Step Guide
Step 1: View Available Flow Blueprints
Before creating a flow, see what blueprints are available:
tg-show-flow-blueprints
Output shows available flow blueprints:
+-------------+-----------------------------------------------------------------------------------------------------------+
| name | everything |
| description | GraphRAG, DocumentRAG, structured data + knowledge cores |
| tags | document-rag, graph-rag, knowledge-extraction, structured-data, kgcore |
| parameters | llm-model: LLM model [llm-model (default: gemini-2.5-flash-lite)] |
| | llm-rag-model: LLM model for RAG [llm-model (default: gemini-2.5-flash-lite)] |
| | llm-temperature: LLM temperature [llm-temperature (default: 0.3)] |
| | llm-rag-temperature: LLM temperature for RAG [llm-temperature (default: 0.3)] |
| | embeddings-model: Embeddings model [embeddings-model (default: sentence-transformers/all-MiniLM-L6-v2)] |
| | chunk-size: Chunk size [chunk-size (default: 2000)] |
| | chunk-overlap: Chunk overlap [chunk-overlap (default: 50)] |
+-------------+-----------------------------------------------------------------------------------------------------------+
+-------------+-----------------------------------------------------------------------------------------------------------+
| name | graph-rag |
| description | GraphRAG only |
| tags | graph-rag, knowledge-extraction |
| parameters | llm-model: LLM model [llm-model (default: gemini-2.5-flash-lite)] |
| | llm-rag-model: LLM model for RAG [llm-model (default: gemini-2.5-flash-lite)] |
| | llm-temperature: LLM temperature [llm-temperature (default: 0.3)] |
| | llm-rag-temperature: LLM temperature for RAG [llm-temperature (default: 0.3)] |
| | embeddings-model: Embeddings model [embeddings-model (default: sentence-transformers/all-MiniLM-L6-v2)] |
| | chunk-size: Chunk size [chunk-size (default: 2000)] |
| | chunk-overlap: Chunk overlap [chunk-overlap (default: 50)] |
+-------------+-----------------------------------------------------------------------------------------------------------+
Each blueprint defines a different processing pipeline. Choose the one that matches your use case e.g.:
- document-rag - Vector similarity search only
- graph-rag - Knowledge graph extraction
- ontology-rag - Schema-based extraction
- document-rag+graph-rag+kgcore - Comprehensive processing with core creation
- everything - All capabilities enabled
Step 2: View Existing Flows
List all configured flows:
tg-show-flows
Output:
+------------+----------------------------------------------------------------------+
| id | default |
| blueprint | everything |
| desc | Default processing flow |
| parameters | • LLM model: Gemini 2.5 Flash Lite |
| | • LLM model for RAG: Gemini 2.5 Flash Lite (controlled by llm-model) |
| | • LLM temperature: 0.300 |
| | • LLM temperature for RAG: 0.300 |
| | • Embeddings model: all-MiniLM-L6-v2 |
| | • Chunk size: 2000 |
| | • Chunk overlap: 50 |
| queue | document-load: persistent://tg/flow/document-load:default |
| | text-load: persistent://tg/flow/text-document-load:default |
+------------+----------------------------------------------------------------------+
TrustGraph starts with a single “default” flow based on the “everything” blueprint.
Step 3: Create a New Flow
Create a specialized flow from a blueprint:
tg-start-flow \
-n graph-rag \
-i my-graph-rag \
-d "Graph RAG processing"
Parameters:
-n- Blueprint name to use-i- Unique ID for the new flow-d- Description
You can also customize flow parameters when creating it using parameters which can be seen in the flow blueprint using tg-show-flow-blueprints.
tg-start-flow \
-n graph-rag \
-i my-graph-rag \
-d "Graph RAG processing" \
--param llm-temperature=0.4 \
--param llm-model=gemini-2.5-flash
This creates a flow with custom settings:
llm-temperature=0.4- Sets the LLM temperature for more focused responsesllm-model=gemini-2.5-flash- Specifies which LLM model to use
To discover all available parameters:
tg-show-parameter-types
This displays all configurable parameters including:
- LLM model settings (
llm-model,llm-temperature) - Chunking configuration (
chunk-size,chunk-overlap) - Embedding settings (
embeddings-model) - Graph traversal parameters
- And more
(env) [try]$ tg-show-parameter-types
+-------------+---------------+
| name | chunk-overlap |
| description | Chunk overlap |
| type | integer |
| default | 50 |
| constraints | required |
+-------------+---------------+
+--------------+--------------------------------------------------------------------+
| name | llm-model |
| description | LLM model to use |
| type | string |
| default | gemini-2.5-flash-lite |
| valid values | • gemini-2.5-pro (Gemini 2.5 Pro) |
| | • gemini-2.5-flash (Gemini 2.5 Flash) |
| | • gemini-2.5-flash-lite (Gemini 2.5 Flash Lite) |
| | • gemini-2.0-flash-exp (Gemini 2.0 Flash (experimental)) |
| | • claude-3-5-sonnet@20241022 (Claude 3.5 Sonnet (via VertexAI)) |
| | • claude-3-5-haiku@20241022 (Claude 3.5 Haiku (via VertexAI)) |
| | • claude-3-opus@20240229 (Claude 3 Opus (via VertexAI)) |
| | • claude-3-sonnet@20240229 (Claude 3 Sonnet (via VertexAI)) |
| | • claude-3-haiku@20240307 (Claude 3 Haiku (via VertexAI)) |
| | • llama3-405b-instruct-maas (Llama 3 405B Instruct (via VertexAI)) |
| | • llama3-70b-instruct-maas (Llama 3 70B Instruct (via VertexAI)) |
| | • llama3-8b-instruct-maas (Llama 3 8B Instruct (via VertexAI)) |
| constraints | required |
+--------------+--------------------------------------------------------------------+
Step 4: Verify the New Flow
List flows again to see your new flow:
tg-show-flows
Output:
+------------+----------------------------------------------------------------------+
| id | default |
| blueprint | everything |
| desc | Default processing flow |
| parameters | • LLM model: Gemini 2.5 Flash Lite |
| | • LLM model for RAG: Gemini 2.5 Flash Lite (controlled by llm-model) |
| | • LLM temperature: 0.300 |
| | • LLM temperature for RAG: 0.300 |
| | • Embeddings model: all-MiniLM-L6-v2 |
| | • Chunk size: 2000 |
| | • Chunk overlap: 50 |
| queue | document-load: persistent://tg/flow/document-load:default |
| | text-load: persistent://tg/flow/text-document-load:default |
+------------+----------------------------------------------------------------------+
+------------+----------------------------------------------------------------------+
| id | my-graph-rag |
| blueprint | graph-rag |
| desc | Graph RAG processing |
| parameters | • LLM model: Gemini 2.5 Flash |
| | • LLM model for RAG: Gemini 2.5 Flash Lite (controlled by llm-model) |
| | • LLM temperature: 0.4 |
| | • LLM temperature for RAG: 0.3 |
| | • Embeddings model: all-MiniLM-L6-v2 |
| | • Chunk size: 2000 |
| | • Chunk overlap: 50 |
| queue | document-load: persistent://tg/flow/document-load:my-graph-rag |
| | text-load: persistent://tg/flow/text-document-load:my-graph-rag |
+------------+----------------------------------------------------------------------+
Step 5: Using the Flow
Now that the flow exists, you can use it when processing documents. Specify the flow ID when submitting documents for processing:
tg-start-library-processing \
--flow-id my-graph-rag \
--document-id https://trustgraph.ai/doc/my-document \
--collection my-collection \
--processing-id urn:processing-01
The document will be processed using your custom flow with the parameters you specified (e.g., the custom LLM model and temperature settings).
Step 6: Stop a Flow
If you need to deactivate a flow:
tg-stop-flow -i my-graph-rag
Output:
Flow 'my-graph-rag' stopped
Note: Stopping a flow prevents new documents from being processed by it, but doesn’t delete the flow configuration.
Step 7: Get Flow Blueprint
View details of a specific flow blueprint:
tg-get-flow-blueprint -n graph-rag
This dumps out the flow blueprint in JSON form.
Output:
Flow 'my-graph-rag' stopped
Note: Stopping a flow prevents new documents from being processed by it, but doesn’t delete the flow configuration.
Next Steps
Related CLI Commands
tg-show-flows- List all flowstg-show-flow-blueprints- List available flow blueprintstg-start-flow- Create and start a flowtg-stop-flow- Stop a running flowtg-get-flow-blueprint- View flow configurationtg-put-flow-blueprint- Create or update a flow blueprinttg-delete-flow-blueprint- Delete a flow blueprint
Other Guides
- Introduction to Flows (Workbench) - Visual walkthrough with detailed explanations
- Graph RAG CLI - Use flows for knowledge graph extraction
- Document RAG CLI - Use flows for vector search
- Ontology RAG CLI - Use flows for schema-based extraction