TrustGraph Python API Reference

Installation

pip install trustgraph

Quick Start

All classes and types are imported from the trustgraph.api package:

from trustgraph.api import Api, Triple, ConfigKey

# Create API client
api = Api(url="http://localhost:8088/")

# Get a flow instance
flow = api.flow().id("default")

# Execute a graph RAG query
response = flow.graph_rag(
    query="What are the main topics?",
    user="trustgraph",
    collection="default"
)

Table of Contents

Core

Flow Clients

WebSocket Clients

Bulk Operations

Metrics

Data Types

Exceptions


Api

from trustgraph.api import Api

Main TrustGraph API client for synchronous and asynchronous operations.

This class provides access to all TrustGraph services including flow management, knowledge graph operations, document processing, RAG queries, and more. It supports both REST-based and WebSocket-based communication patterns.

The client can be used as a context manager for automatic resource cleanup: python with Api(url="http://localhost:8088/") as api: result = api.flow().id("default").graph_rag(query="test")

Methods

__aenter__(self)

Enter asynchronous context manager.

__aexit__(self, *args)

Exit asynchronous context manager and close connections.

__enter__(self)

Enter synchronous context manager.

__exit__(self, *args)

Exit synchronous context manager and close connections.

__init__(self, url='http://localhost:8088/', timeout=60, token: Optional[str] = None)

Initialize the TrustGraph API client.

Arguments:

  • url: Base URL for TrustGraph API (default: “http://localhost:8088/”)
  • timeout: Request timeout in seconds (default: 60)
  • token: Optional bearer token for authentication

Example:

# Local development
api = Api()

# Production with authentication
api = Api(
    url="https://trustgraph.example.com/",
    timeout=120,
    token="your-api-token"
)

aclose(self)

Close all asynchronous client connections.

This method closes async WebSocket, bulk operation, and flow connections. It is automatically called when exiting an async context manager.

Example:

api = Api()
async_socket = api.async_socket()
# ... use async_socket
await api.aclose()  # Clean up connections

# Or use async context manager (automatic cleanup)
async with Api() as api:
    async_socket = api.async_socket()
    # ... use async_socket
# Automatically closed

async_bulk(self)

Get an asynchronous bulk operations client.

Provides async/await style bulk import/export operations via WebSocket for efficient handling of large datasets.

Returns: AsyncBulkClient: Asynchronous bulk operations client

Example:

async_bulk = api.async_bulk()

# Export triples asynchronously
async for triple in async_bulk.export_triples(flow="default"):
    print(f"{triple.s} {triple.p} {triple.o}")

# Import with async generator
async def triple_gen():
    yield Triple(s="subj", p="pred", o="obj")
    # ... more triples

await async_bulk.import_triples(
    flow="default",
    triples=triple_gen()
)

async_flow(self)

Get an asynchronous REST-based flow client.

Provides async/await style access to flow operations. This is preferred for async Python applications and frameworks (FastAPI, aiohttp, etc.).

Returns: AsyncFlow: Asynchronous flow client

Example:

async_flow = api.async_flow()

# List flows
flow_ids = await async_flow.list()

# Execute operations
instance = async_flow.id("default")
result = await instance.text_completion(
    system="You are helpful",
    prompt="Hello"
)

async_metrics(self)

Get an asynchronous metrics client.

Provides async/await style access to Prometheus metrics.

Returns: AsyncMetrics: Asynchronous metrics client

Example:

async_metrics = api.async_metrics()
prometheus_text = await async_metrics.get()
print(prometheus_text)

async_socket(self)

Get an asynchronous WebSocket client for streaming operations.

Provides async/await style WebSocket access with streaming support. This is the preferred method for async streaming in Python.

Returns: AsyncSocketClient: Asynchronous WebSocket client

Example:

async_socket = api.async_socket()
flow = async_socket.flow("default")

# Stream agent responses
async for chunk in flow.agent(
    question="Explain quantum computing",
    user="trustgraph",
    streaming=True
):
    if hasattr(chunk, 'content'):
        print(chunk.content, end='', flush=True)

bulk(self)

Get a synchronous bulk operations client for import/export.

Bulk operations allow efficient transfer of large datasets via WebSocket connections, including triples, embeddings, entity contexts, and objects.

Returns: BulkClient: Synchronous bulk operations client

Example:

bulk = api.bulk()

# Export triples
for triple in bulk.export_triples(flow="default"):
    print(f"{triple.s} {triple.p} {triple.o}")

# Import triples
def triple_generator():
    yield Triple(s="subj", p="pred", o="obj")
    # ... more triples

bulk.import_triples(flow="default", triples=triple_generator())

close(self)

Close all synchronous client connections.

This method closes WebSocket and bulk operation connections. It is automatically called when exiting a context manager.

Example:

api = Api()
socket = api.socket()
# ... use socket
api.close()  # Clean up connections

# Or use context manager (automatic cleanup)
with Api() as api:
    socket = api.socket()
    # ... use socket
# Automatically closed

collection(self)

Get a Collection client for managing data collections.

Collections organize documents and knowledge graph data into logical groupings for isolation and access control.

Returns: Collection: Collection management client

Example:

collection = api.collection()

# List collections
colls = collection.list_collections(user="trustgraph")

# Update collection metadata
collection.update_collection(
    user="trustgraph",
    collection="default",
    name="Default Collection",
    description="Main data collection"
)

config(self)

Get a Config client for managing configuration settings.

Returns: Config: Configuration management client

Example:

config = api.config()

# Get configuration values
values = config.get([ConfigKey(type="llm", key="model")])

# Set configuration
config.put([ConfigValue(type="llm", key="model", value="gpt-4")])

flow(self)

Get a Flow client for managing and interacting with flows.

Flows are the primary execution units in TrustGraph, providing access to services like agents, RAG queries, embeddings, and document processing.

Returns: Flow: Flow management client

Example:

flow_client = api.flow()

# List available blueprints
blueprints = flow_client.list_blueprints()

# Get a specific flow instance
flow_instance = flow_client.id("default")
response = flow_instance.text_completion(
    system="You are helpful",
    prompt="Hello"
)

knowledge(self)

Get a Knowledge client for managing knowledge graph cores.

Returns: Knowledge: Knowledge graph management client

Example:

knowledge = api.knowledge()

# List available KG cores
cores = knowledge.list_kg_cores(user="trustgraph")

# Load a KG core
knowledge.load_kg_core(id="core-123", user="trustgraph")

library(self)

Get a Library client for document management.

The library provides document storage, metadata management, and processing workflow coordination.

Returns: Library: Document library management client

Example:

library = api.library()

# Add a document
library.add_document(
    document=b"Document content",
    id="doc-123",
    metadata=[],
    user="trustgraph",
    title="My Document",
    comments="Test document"
)

# List documents
docs = library.get_documents(user="trustgraph")

metrics(self)

Get a synchronous metrics client for monitoring.

Retrieves Prometheus-formatted metrics from the TrustGraph service for monitoring and observability.

Returns: Metrics: Synchronous metrics client

Example:

metrics = api.metrics()
prometheus_text = metrics.get()
print(prometheus_text)

request(self, path, request)

Make a low-level REST API request.

This method is primarily for internal use but can be used for direct API access when needed.

Arguments:

  • path: API endpoint path (relative to base URL)
  • request: Request payload as a dictionary

Returns: dict: Response object

Raises:

  • ProtocolException: If the response status is not 200 or response is not JSON
  • ApplicationException: If the response contains an error

Example:

response = api.request("flow", {
    "operation": "list-flows"
})

socket(self)

Get a synchronous WebSocket client for streaming operations.

WebSocket connections provide streaming support for real-time responses from agents, RAG queries, and text completions. This method returns a synchronous wrapper around the WebSocket protocol.

Returns: SocketClient: Synchronous WebSocket client

Example:

socket = api.socket()
flow = socket.flow("default")

# Stream agent responses
for chunk in flow.agent(
    question="Explain quantum computing",
    user="trustgraph",
    streaming=True
):
    if hasattr(chunk, 'content'):
        print(chunk.content, end='', flush=True)

Flow

from trustgraph.api import Flow

Flow management client for blueprint and flow instance operations.

This class provides methods for managing flow blueprints (templates) and flow instances (running flows). Blueprints define the structure and parameters of flows, while instances represent active flows that can execute services.

Methods

__init__(self, api)

Initialize Flow client.

Arguments:

  • api: Parent Api instance for making requests

delete_blueprint(self, blueprint_name)

Delete a flow blueprint.

Arguments:

  • blueprint_name: Name of the blueprint to delete

Example:

api.flow().delete_blueprint("old-blueprint")

get(self, id)

Get the definition of a running flow instance.

Arguments:

  • id: Flow instance ID

Returns: dict: Flow instance definition

Example:

flow_def = api.flow().get("default")
print(flow_def)

get_blueprint(self, blueprint_name)

Get a flow blueprint definition by name.

Arguments:

  • blueprint_name: Name of the blueprint to retrieve

Returns: dict: Blueprint definition as a dictionary

Example:

blueprint = api.flow().get_blueprint("default")
print(blueprint)  # Blueprint configuration

id(self, id='default')

Get a FlowInstance for executing operations on a specific flow.

Arguments:

  • id: Flow identifier (default: “default”)

Returns: FlowInstance: Flow instance for service operations

Example:

flow = api.flow().id("my-flow")
response = flow.text_completion(
    system="You are helpful",
    prompt="Hello"
)

list(self)

List all active flow instances.

Returns: list[str]: List of flow instance IDs

Example:

flows = api.flow().list()
print(flows)  # ['default', 'flow-1', 'flow-2', ...]

list_blueprints(self)

List all available flow blueprints.

Returns: list[str]: List of blueprint names

Example:

blueprints = api.flow().list_blueprints()
print(blueprints)  # ['default', 'custom-flow', ...]

put_blueprint(self, blueprint_name, definition)

Create or update a flow blueprint.

Arguments:

  • blueprint_name: Name for the blueprint
  • definition: Blueprint definition dictionary

Example:

definition = {
    "services": ["text-completion", "graph-rag"],
    "parameters": {"model": "gpt-4"}
}
api.flow().put_blueprint("my-blueprint", definition)

request(self, path=None, request=None)

Make a flow-scoped API request.

Arguments:

  • path: Optional path suffix for flow endpoints
  • request: Request payload dictionary

Returns: dict: Response object

Raises:

  • RuntimeError: If request parameter is not specified

start(self, blueprint_name, id, description, parameters=None)

Start a new flow instance from a blueprint.

Arguments:

  • blueprint_name: Name of the blueprint to instantiate
  • id: Unique identifier for the flow instance
  • description: Human-readable description
  • parameters: Optional parameters dictionary

Example:

api.flow().start(
    blueprint_name="default",
    id="my-flow",
    description="My custom flow",
    parameters={"model": "gpt-4"}
)

stop(self, id)

Stop a running flow instance.

Arguments:

  • id: Flow instance ID to stop

Example:

api.flow().stop("my-flow")

FlowInstance

from trustgraph.api import FlowInstance

Flow instance client for executing services on a specific flow.

This class provides access to all TrustGraph services including:

  • Text completion and embeddings
  • Agent operations with state management
  • Graph and document RAG queries
  • Knowledge graph operations (triples, objects)
  • Document loading and processing
  • Natural language to GraphQL query conversion
  • Structured data analysis and schema detection
  • MCP tool execution
  • Prompt templating

Services are accessed through a running flow instance identified by ID.

Methods

__init__(self, api, id)

Initialize FlowInstance.

Arguments:

  • api: Parent Flow client
  • id: Flow instance identifier

agent(self, question, user='trustgraph', state=None, group=None, history=None)

Execute an agent operation with reasoning and tool use capabilities.

Agents can perform multi-step reasoning, use tools, and maintain conversation state across interactions. This is a synchronous non-streaming version.

Arguments:

  • question: User question or instruction
  • user: User identifier (default: “trustgraph”)
  • state: Optional state dictionary for stateful conversations
  • group: Optional group identifier for multi-user contexts
  • history: Optional conversation history as list of message dicts

Returns: str: Agent’s final answer

Example:

flow = api.flow().id("default")

# Simple question
answer = flow.agent(
    question="What is the capital of France?",
    user="trustgraph"
)

# With conversation history
history = [
    {"role": "user", "content": "Hello"},
    {"role": "assistant", "content": "Hi! How can I help?"}
]
answer = flow.agent(
    question="Tell me about Paris",
    user="trustgraph",
    history=history
)

detect_type(self, sample)

Detect the data type of a structured data sample.

Arguments:

  • sample: Data sample to analyze (string content)

Returns: dict with detected_type, confidence, and optional metadata

diagnose_data(self, sample, schema_name=None, options=None)

Perform combined data diagnosis: detect type and generate descriptor.

Arguments:

  • sample: Data sample to analyze (string content)
  • schema_name: Optional target schema name for descriptor generation
  • options: Optional parameters (e.g., delimiter for CSV)

Returns: dict with detected_type, confidence, descriptor, and metadata

document_rag(self, query, user='trustgraph', collection='default', doc_limit=10)

Execute document-based Retrieval-Augmented Generation (RAG) query.

Document RAG uses vector embeddings to find relevant document chunks, then generates a response using an LLM with those chunks as context.

Arguments:

  • query: Natural language query
  • user: User/keyspace identifier (default: “trustgraph”)
  • collection: Collection identifier (default: “default”)
  • doc_limit: Maximum document chunks to retrieve (default: 10)

Returns: str: Generated response incorporating document context

Example:

flow = api.flow().id("default")
response = flow.document_rag(
    query="Summarize the key findings",
    user="trustgraph",
    collection="research-papers",
    doc_limit=5
)
print(response)

embeddings(self, text)

Generate vector embeddings for text.

Converts text into dense vector representations suitable for semantic search and similarity comparison.

Arguments:

  • text: Input text to embed

Returns: list[float]: Vector embedding

Example:

flow = api.flow().id("default")
vectors = flow.embeddings("quantum computing")
print(f"Embedding dimension: {len(vectors)}")

generate_descriptor(self, sample, data_type, schema_name, options=None)

Generate a descriptor for structured data mapping to a specific schema.

Arguments:

  • sample: Data sample to analyze (string content)
  • data_type: Data type (csv, json, xml)
  • schema_name: Target schema name for descriptor generation
  • options: Optional parameters (e.g., delimiter for CSV)

Returns: dict with descriptor and metadata

graph_embeddings_query(self, text, user, collection, limit=10)

Query knowledge graph entities using semantic similarity.

Finds entities in the knowledge graph whose descriptions are semantically similar to the input text, using vector embeddings.

Arguments:

  • text: Query text for semantic search
  • user: User/keyspace identifier
  • collection: Collection identifier
  • limit: Maximum number of results (default: 10)

Returns: dict: Query results with similar entities

Example:

flow = api.flow().id("default")
results = flow.graph_embeddings_query(
    text="physicist who discovered radioactivity",
    user="trustgraph",
    collection="scientists",
    limit=5
)

graph_rag(self, query, user='trustgraph', collection='default', entity_limit=50, triple_limit=30, max_subgraph_size=150, max_path_length=2)

Execute graph-based Retrieval-Augmented Generation (RAG) query.

Graph RAG uses knowledge graph structure to find relevant context by traversing entity relationships, then generates a response using an LLM.

Arguments:

  • query: Natural language query
  • user: User/keyspace identifier (default: “trustgraph”)
  • collection: Collection identifier (default: “default”)
  • entity_limit: Maximum entities to retrieve (default: 50)
  • triple_limit: Maximum triples per entity (default: 30)
  • max_subgraph_size: Maximum total triples in subgraph (default: 150)
  • max_path_length: Maximum traversal depth (default: 2)

Returns: str: Generated response incorporating graph context

Example:

flow = api.flow().id("default")
response = flow.graph_rag(
    query="Tell me about Marie Curie's discoveries",
    user="trustgraph",
    collection="scientists",
    entity_limit=20,
    max_path_length=3
)
print(response)

load_document(self, document, id=None, metadata=None, user=None, collection=None)

Load a binary document for processing.

Uploads a document (PDF, DOCX, images, etc.) for extraction and processing through the flow’s document pipeline.

Arguments:

  • document: Document content as bytes
  • id: Optional document identifier (auto-generated if None)
  • metadata: Optional metadata (list of Triples or object with emit method)
  • user: User/keyspace identifier (optional)
  • collection: Collection identifier (optional)

Returns: dict: Processing response

Raises:

  • RuntimeError: If metadata is provided without id

Example:

flow = api.flow().id("default")

# Load a PDF document
with open("research.pdf", "rb") as f:
    result = flow.load_document(
        document=f.read(),
        id="research-001",
        user="trustgraph",
        collection="papers"
    )

load_text(self, text, id=None, metadata=None, charset='utf-8', user=None, collection=None)

Load text content for processing.

Uploads text content for extraction and processing through the flow’s text pipeline.

Arguments:

  • text: Text content as bytes
  • id: Optional document identifier (auto-generated if None)
  • metadata: Optional metadata (list of Triples or object with emit method)
  • charset: Character encoding (default: “utf-8”)
  • user: User/keyspace identifier (optional)
  • collection: Collection identifier (optional)

Returns: dict: Processing response

Raises:

  • RuntimeError: If metadata is provided without id

Example:

flow = api.flow().id("default")

# Load text content
text_content = b"This is the document content..."
result = flow.load_text(
    text=text_content,
    id="text-001",
    charset="utf-8",
    user="trustgraph",
    collection="documents"
)

mcp_tool(self, name, parameters={})

Execute a Model Context Protocol (MCP) tool.

MCP tools provide extensible functionality for agents and workflows, allowing integration with external systems and services.

Arguments:

  • name: Tool name/identifier
  • parameters: Tool parameters dictionary (default: {})

Returns: str or dict: Tool execution result

Raises:

  • ProtocolException: If response format is invalid

Example:

flow = api.flow().id("default")

# Execute a tool
result = flow.mcp_tool(
    name="search-web",
    parameters={"query": "latest AI news", "limit": 5}
)

nlp_query(self, question, max_results=100)

Convert a natural language question to a GraphQL query.

Arguments:

  • question: Natural language question
  • max_results: Maximum number of results to return (default: 100)

Returns: dict with graphql_query, variables, detected_schemas, confidence

objects_query(self, query, user='trustgraph', collection='default', variables=None, operation_name=None)

Execute a GraphQL query against structured objects in the knowledge graph.

Queries structured data using GraphQL syntax, allowing complex queries with filtering, aggregation, and relationship traversal.

Arguments:

  • query: GraphQL query string
  • user: User/keyspace identifier (default: “trustgraph”)
  • collection: Collection identifier (default: “default”)
  • variables: Optional query variables dictionary
  • operation_name: Optional operation name for multi-operation documents

Returns: dict: GraphQL response with ‘data’, ‘errors’, and/or ‘extensions’ fields

Raises:

  • ProtocolException: If system-level error occurs

Example:

flow = api.flow().id("default")

# Simple query
query = '''
{
  scientists(limit: 10) {
    name
    field
    discoveries
  }
}
'''
result = flow.objects_query(
    query=query,
    user="trustgraph",
    collection="scientists"
)

# Query with variables
query = '''
query GetScientist($name: String!) {
  scientists(name: $name) {
    name
    nobelPrizes
  }
}
'''
result = flow.objects_query(
    query=query,
    variables={"name": "Marie Curie"}
)

prompt(self, id, variables)

Execute a prompt template with variable substitution.

Prompt templates allow reusable prompt patterns with dynamic variable substitution, useful for consistent prompt engineering.

Arguments:

  • id: Prompt template identifier
  • variables: Dictionary of variable name to value mappings

Returns: str or dict: Rendered prompt result (text or structured object)

Raises:

  • ProtocolException: If response format is invalid

Example:

flow = api.flow().id("default")

# Text template
result = flow.prompt(
    id="summarize-template",
    variables={"topic": "quantum computing", "length": "brief"}
)

# Structured template
result = flow.prompt(
    id="extract-entities",
    variables={"text": "Marie Curie won Nobel Prizes"}
)

request(self, path, request)

Make a service request on this flow instance.

Arguments:

  • path: Service path (e.g., “service/text-completion”)
  • request: Request payload dictionary

Returns: dict: Service response

schema_selection(self, sample, options=None)

Select matching schemas for a data sample using prompt analysis.

Arguments:

  • sample: Data sample to analyze (string content)
  • options: Optional parameters

Returns: dict with schema_matches array and metadata

structured_query(self, question, user='trustgraph', collection='default')

Execute a natural language question against structured data. Combines NLP query conversion and GraphQL execution.

Arguments:

  • question: Natural language question
  • user: Cassandra keyspace identifier (default: “trustgraph”)
  • collection: Data collection identifier (default: “default”)

Returns: dict with data and optional errors

text_completion(self, system, prompt)

Execute text completion using the flow’s LLM.

Arguments:

  • system: System prompt defining the assistant’s behavior
  • prompt: User prompt/question

Returns: str: Generated response text

Example:

flow = api.flow().id("default")
response = flow.text_completion(
    system="You are a helpful assistant",
    prompt="What is quantum computing?"
)
print(response)

triples_query(self, s=None, p=None, o=None, user=None, collection=None, limit=10000)

Query knowledge graph triples using pattern matching.

Searches for RDF triples matching the given subject, predicate, and/or object patterns. Unspecified parameters act as wildcards.

Arguments:

  • s: Subject URI (optional, use None for wildcard)
  • p: Predicate URI (optional, use None for wildcard)
  • o: Object URI or Literal (optional, use None for wildcard)
  • user: User/keyspace identifier (optional)
  • collection: Collection identifier (optional)
  • limit: Maximum results to return (default: 10000)

Returns: list[Triple]: List of matching Triple objects

Raises:

  • RuntimeError: If s or p is not a Uri, or o is not Uri/Literal

Example:

from trustgraph.knowledge import Uri, Literal

flow = api.flow().id("default")

# Find all triples about a specific subject
triples = flow.triples_query(
    s=Uri("http://example.org/person/marie-curie"),
    user="trustgraph",
    collection="scientists"
)

# Find all instances of a specific relationship
triples = flow.triples_query(
    p=Uri("http://example.org/ontology/discovered"),
    limit=100
)

AsyncFlow

from trustgraph.api import AsyncFlow

Asynchronous REST-based flow interface

Methods

__init__(self, url: str, timeout: int, token: Optional[str]) -> None

Initialize self. See help(type(self)) for accurate signature.

aclose(self) -> None

Close connection (cleanup handled by aiohttp session)

delete_class(self, class_name: str)

Delete flow class

get(self, id: str) -> Dict[str, Any]

Get flow definition

get_class(self, class_name: str) -> Dict[str, Any]

Get flow class definition

id(self, flow_id: str)

Get async flow instance

list(self) -> List[str]

List all flows

list_classes(self) -> List[str]

List flow classes

put_class(self, class_name: str, definition: Dict[str, Any])

Create/update flow class

request(self, path: str, request_data: Dict[str, Any]) -> Dict[str, Any]

Make async HTTP request to Gateway API

start(self, class_name: str, id: str, description: str, parameters: Optional[Dict] = None)

Start a flow

stop(self, id: str)

Stop a flow


AsyncFlowInstance

from trustgraph.api import AsyncFlowInstance

Asynchronous REST flow instance

Methods

__init__(self, flow: trustgraph.api.async_flow.AsyncFlow, flow_id: str)

Initialize self. See help(type(self)) for accurate signature.

agent(self, question: str, user: str, state: Optional[Dict] = None, group: Optional[str] = None, history: Optional[List] = None, **kwargs: Any) -> Dict[str, Any]

Execute agent (non-streaming, use async_socket for streaming)

document_rag(self, query: str, user: str, collection: str, doc_limit: int = 10, **kwargs: Any) -> str

Document RAG (non-streaming, use async_socket for streaming)

embeddings(self, text: str, **kwargs: Any)

Generate text embeddings

graph_embeddings_query(self, text: str, user: str, collection: str, limit: int = 10, **kwargs: Any)

Query graph embeddings for semantic search

graph_rag(self, query: str, user: str, collection: str, max_subgraph_size: int = 1000, max_subgraph_count: int = 5, max_entity_distance: int = 3, **kwargs: Any) -> str

Graph RAG (non-streaming, use async_socket for streaming)

objects_query(self, query: str, user: str, collection: str, variables: Optional[Dict] = None, operation_name: Optional[str] = None, **kwargs: Any)

GraphQL query

request(self, service: str, request_data: Dict[str, Any]) -> Dict[str, Any]

Make request to flow-scoped service

text_completion(self, system: str, prompt: str, **kwargs: Any) -> str

Text completion (non-streaming, use async_socket for streaming)

triples_query(self, s=None, p=None, o=None, user=None, collection=None, limit=100, **kwargs: Any)

Triple pattern query


SocketClient

from trustgraph.api import SocketClient

Synchronous WebSocket client (wraps async websockets library)

Methods

__init__(self, url: str, timeout: int, token: Optional[str]) -> None

Initialize self. See help(type(self)) for accurate signature.

close(self) -> None

Close WebSocket connection

flow(self, flow_id: str) -> 'SocketFlowInstance'

Get flow instance for WebSocket operations


SocketFlowInstance

from trustgraph.api import SocketFlowInstance

Synchronous WebSocket flow instance with same interface as REST FlowInstance

Methods

__init__(self, client: trustgraph.api.socket_client.SocketClient, flow_id: str) -> None

Initialize self. See help(type(self)) for accurate signature.

agent(self, question: str, user: str, state: Optional[Dict[str, Any]] = None, group: Optional[str] = None, history: Optional[List[Dict[str, Any]]] = None, streaming: bool = False, **kwargs: Any) -> Union[Dict[str, Any], Iterator[trustgraph.api.types.StreamingChunk]]

Agent with optional streaming

document_rag(self, query: str, user: str, collection: str, doc_limit: int = 10, streaming: bool = False, **kwargs: Any) -> Union[str, Iterator[str]]

Document RAG with optional streaming

embeddings(self, text: str, **kwargs: Any) -> Dict[str, Any]

Generate text embeddings

graph_embeddings_query(self, text: str, user: str, collection: str, limit: int = 10, **kwargs: Any) -> Dict[str, Any]

Query graph embeddings for semantic search

graph_rag(self, query: str, user: str, collection: str, max_subgraph_size: int = 1000, max_subgraph_count: int = 5, max_entity_distance: int = 3, streaming: bool = False, **kwargs: Any) -> Union[str, Iterator[str]]

Graph RAG with optional streaming

mcp_tool(self, name: str, parameters: Dict[str, Any], **kwargs: Any) -> Dict[str, Any]

Execute MCP tool

objects_query(self, query: str, user: str, collection: str, variables: Optional[Dict[str, Any]] = None, operation_name: Optional[str] = None, **kwargs: Any) -> Dict[str, Any]

GraphQL query

prompt(self, id: str, variables: Dict[str, str], streaming: bool = False, **kwargs: Any) -> Union[str, Iterator[str]]

Execute prompt with optional streaming

text_completion(self, system: str, prompt: str, streaming: bool = False, **kwargs) -> Union[str, Iterator[str]]

Text completion with optional streaming

triples_query(self, s: Optional[str] = None, p: Optional[str] = None, o: Optional[str] = None, user: Optional[str] = None, collection: Optional[str] = None, limit: int = 100, **kwargs: Any) -> Dict[str, Any]

Triple pattern query


AsyncSocketClient

from trustgraph.api import AsyncSocketClient

Asynchronous WebSocket client

Methods

__init__(self, url: str, timeout: int, token: Optional[str])

Initialize self. See help(type(self)) for accurate signature.

aclose(self)

Close WebSocket connection

flow(self, flow_id: str)

Get async flow instance for WebSocket operations


AsyncSocketFlowInstance

from trustgraph.api import AsyncSocketFlowInstance

Asynchronous WebSocket flow instance

Methods

__init__(self, client: trustgraph.api.async_socket_client.AsyncSocketClient, flow_id: str)

Initialize self. See help(type(self)) for accurate signature.

agent(self, question: str, user: str, state: Optional[Dict[str, Any]] = None, group: Optional[str] = None, history: Optional[list] = None, streaming: bool = False, **kwargs) -> Union[Dict[str, Any], AsyncIterator]

Agent with optional streaming

document_rag(self, query: str, user: str, collection: str, doc_limit: int = 10, streaming: bool = False, **kwargs)

Document RAG with optional streaming

embeddings(self, text: str, **kwargs)

Generate text embeddings

graph_embeddings_query(self, text: str, user: str, collection: str, limit: int = 10, **kwargs)

Query graph embeddings for semantic search

graph_rag(self, query: str, user: str, collection: str, max_subgraph_size: int = 1000, max_subgraph_count: int = 5, max_entity_distance: int = 3, streaming: bool = False, **kwargs)

Graph RAG with optional streaming

mcp_tool(self, name: str, parameters: Dict[str, Any], **kwargs)

Execute MCP tool

objects_query(self, query: str, user: str, collection: str, variables: Optional[Dict] = None, operation_name: Optional[str] = None, **kwargs)

GraphQL query

prompt(self, id: str, variables: Dict[str, str], streaming: bool = False, **kwargs)

Execute prompt with optional streaming

text_completion(self, system: str, prompt: str, streaming: bool = False, **kwargs)

Text completion with optional streaming

triples_query(self, s=None, p=None, o=None, user=None, collection=None, limit=100, **kwargs)

Triple pattern query


BulkClient

from trustgraph.api import BulkClient

Synchronous bulk operations client

Methods

__init__(self, url: str, timeout: int, token: Optional[str]) -> None

Initialize self. See help(type(self)) for accurate signature.

close(self) -> None

Close connections

export_document_embeddings(self, flow: str, **kwargs: Any) -> Iterator[Dict[str, Any]]

Bulk export document embeddings via WebSocket

export_entity_contexts(self, flow: str, **kwargs: Any) -> Iterator[Dict[str, Any]]

Bulk export entity contexts via WebSocket

export_graph_embeddings(self, flow: str, **kwargs: Any) -> Iterator[Dict[str, Any]]

Bulk export graph embeddings via WebSocket

export_triples(self, flow: str, **kwargs: Any) -> Iterator[trustgraph.api.types.Triple]

Bulk export triples via WebSocket

import_document_embeddings(self, flow: str, embeddings: Iterator[Dict[str, Any]], **kwargs: Any) -> None

Bulk import document embeddings via WebSocket

import_entity_contexts(self, flow: str, contexts: Iterator[Dict[str, Any]], **kwargs: Any) -> None

Bulk import entity contexts via WebSocket

import_graph_embeddings(self, flow: str, embeddings: Iterator[Dict[str, Any]], **kwargs: Any) -> None

Bulk import graph embeddings via WebSocket

import_objects(self, flow: str, objects: Iterator[Dict[str, Any]], **kwargs: Any) -> None

Bulk import objects via WebSocket

import_triples(self, flow: str, triples: Iterator[trustgraph.api.types.Triple], **kwargs: Any) -> None

Bulk import triples via WebSocket


AsyncBulkClient

from trustgraph.api import AsyncBulkClient

Asynchronous bulk operations client

Methods

__init__(self, url: str, timeout: int, token: Optional[str]) -> None

Initialize self. See help(type(self)) for accurate signature.

aclose(self) -> None

Close connections

export_document_embeddings(self, flow: str, **kwargs: Any) -> AsyncIterator[Dict[str, Any]]

Bulk export document embeddings via WebSocket

export_entity_contexts(self, flow: str, **kwargs: Any) -> AsyncIterator[Dict[str, Any]]

Bulk export entity contexts via WebSocket

export_graph_embeddings(self, flow: str, **kwargs: Any) -> AsyncIterator[Dict[str, Any]]

Bulk export graph embeddings via WebSocket

export_triples(self, flow: str, **kwargs: Any) -> AsyncIterator[trustgraph.api.types.Triple]

Bulk export triples via WebSocket

import_document_embeddings(self, flow: str, embeddings: AsyncIterator[Dict[str, Any]], **kwargs: Any) -> None

Bulk import document embeddings via WebSocket

import_entity_contexts(self, flow: str, contexts: AsyncIterator[Dict[str, Any]], **kwargs: Any) -> None

Bulk import entity contexts via WebSocket

import_graph_embeddings(self, flow: str, embeddings: AsyncIterator[Dict[str, Any]], **kwargs: Any) -> None

Bulk import graph embeddings via WebSocket

import_objects(self, flow: str, objects: AsyncIterator[Dict[str, Any]], **kwargs: Any) -> None

Bulk import objects via WebSocket

import_triples(self, flow: str, triples: AsyncIterator[trustgraph.api.types.Triple], **kwargs: Any) -> None

Bulk import triples via WebSocket


Metrics

from trustgraph.api import Metrics

Synchronous metrics client

Methods

__init__(self, url: str, timeout: int, token: Optional[str]) -> None

Initialize self. See help(type(self)) for accurate signature.

get(self) -> str

Get Prometheus metrics as text


AsyncMetrics

from trustgraph.api import AsyncMetrics

Asynchronous metrics client

Methods

__init__(self, url: str, timeout: int, token: Optional[str]) -> None

Initialize self. See help(type(self)) for accurate signature.

aclose(self) -> None

Close connections

get(self) -> str

Get Prometheus metrics as text


Triple

from trustgraph.api import Triple

RDF triple representing a knowledge graph statement.

Fields:

  • s: <class ‘str’>
  • p: <class ‘str’>
  • o: <class ‘str’>

Methods

__init__(self, s: str, p: str, o: str) -> None

Initialize self. See help(type(self)) for accurate signature.


ConfigKey

from trustgraph.api import ConfigKey

Configuration key identifier.

Fields:

  • type: <class ‘str’>
  • key: <class ‘str’>

Methods

__init__(self, type: str, key: str) -> None

Initialize self. See help(type(self)) for accurate signature.


ConfigValue

from trustgraph.api import ConfigValue

Configuration key-value pair.

Fields:

  • type: <class ‘str’>
  • key: <class ‘str’>
  • value: <class ‘str’>

Methods

__init__(self, type: str, key: str, value: str) -> None

Initialize self. See help(type(self)) for accurate signature.


DocumentMetadata

from trustgraph.api import DocumentMetadata

Metadata for a document in the library.

Fields:

  • id: <class ‘str’>
  • time: <class ‘datetime.datetime’>
  • kind: <class ‘str’>
  • title: <class ‘str’>
  • comments: <class ‘str’>
  • metadata: typing.List[trustgraph.api.types.Triple]
  • user: <class ‘str’>
  • tags: typing.List[str]

Methods

__init__(self, id: str, time: datetime.datetime, kind: str, title: str, comments: str, metadata: List[trustgraph.api.types.Triple], user: str, tags: List[str]) -> None

Initialize self. See help(type(self)) for accurate signature.


ProcessingMetadata

from trustgraph.api import ProcessingMetadata

Metadata for an active document processing job.

Fields:

  • id: <class ‘str’>
  • document_id: <class ‘str’>
  • time: <class ‘datetime.datetime’>
  • flow: <class ‘str’>
  • user: <class ‘str’>
  • collection: <class ‘str’>
  • tags: typing.List[str]

Methods

__init__(self, id: str, document_id: str, time: datetime.datetime, flow: str, user: str, collection: str, tags: List[str]) -> None

Initialize self. See help(type(self)) for accurate signature.


CollectionMetadata

from trustgraph.api import CollectionMetadata

Metadata for a data collection.

Collections provide logical grouping and isolation for documents and knowledge graph data.

Attributes:

  • name: Human: readable collection name

Fields:

  • user: <class ‘str’>
  • collection: <class ‘str’>
  • name: <class ‘str’>
  • description: <class ‘str’>
  • tags: typing.List[str]

Methods

__init__(self, user: str, collection: str, name: str, description: str, tags: List[str]) -> None

Initialize self. See help(type(self)) for accurate signature.


StreamingChunk

from trustgraph.api import StreamingChunk

Base class for streaming response chunks.

Used for WebSocket-based streaming operations where responses are delivered incrementally as they are generated.

Fields:

  • content: <class ‘str’>
  • end_of_message: <class ‘bool’>

Methods

__init__(self, content: str, end_of_message: bool = False) -> None

Initialize self. See help(type(self)) for accurate signature.


AgentThought

from trustgraph.api import AgentThought

Agent reasoning/thought process chunk.

Represents the agent’s internal reasoning or planning steps during execution. These chunks show how the agent is thinking about the problem.

Fields:

  • content: <class ‘str’>
  • end_of_message: <class ‘bool’>
  • chunk_type: <class ‘str’>

Methods

__init__(self, content: str, end_of_message: bool = False, chunk_type: str = 'thought') -> None

Initialize self. See help(type(self)) for accurate signature.


AgentObservation

from trustgraph.api import AgentObservation

Agent tool execution observation chunk.

Represents the result or observation from executing a tool or action. These chunks show what the agent learned from using tools.

Fields:

  • content: <class ‘str’>
  • end_of_message: <class ‘bool’>
  • chunk_type: <class ‘str’>

Methods

__init__(self, content: str, end_of_message: bool = False, chunk_type: str = 'observation') -> None

Initialize self. See help(type(self)) for accurate signature.


AgentAnswer

from trustgraph.api import AgentAnswer

Agent final answer chunk.

Represents the agent’s final response to the user’s query after completing its reasoning and tool use.

Attributes:

  • chunk_type: Always "final: answer”

Fields:

  • content: <class ‘str’>
  • end_of_message: <class ‘bool’>
  • chunk_type: <class ‘str’>
  • end_of_dialog: <class ‘bool’>

Methods

__init__(self, content: str, end_of_message: bool = False, chunk_type: str = 'final-answer', end_of_dialog: bool = False) -> None

Initialize self. See help(type(self)) for accurate signature.


RAGChunk

from trustgraph.api import RAGChunk

RAG (Retrieval-Augmented Generation) streaming chunk.

Used for streaming responses from graph RAG, document RAG, text completion, and other generative services.

Fields:

  • content: <class ‘str’>
  • end_of_message: <class ‘bool’>
  • chunk_type: <class ‘str’>
  • end_of_stream: <class ‘bool’>
  • error: typing.Optional[typing.Dict[str, str]]

Methods

__init__(self, content: str, end_of_message: bool = False, chunk_type: str = 'rag', end_of_stream: bool = False, error: Optional[Dict[str, str]] = None) -> None

Initialize self. See help(type(self)) for accurate signature.


ProtocolException

from trustgraph.api import ProtocolException

Raised when WebSocket protocol errors occur


TrustGraphException

from trustgraph.api import TrustGraphException

Base class for all TrustGraph service errors


AgentError

from trustgraph.api import AgentError

Agent service error


ConfigError

from trustgraph.api import ConfigError

Configuration service error


DocumentRagError

from trustgraph.api import DocumentRagError

Document RAG retrieval error


FlowError

from trustgraph.api import FlowError

Flow management error


GatewayError

from trustgraph.api import GatewayError

API Gateway error


GraphRagError

from trustgraph.api import GraphRagError

Graph RAG retrieval error


LLMError

from trustgraph.api import LLMError

LLM service error


LoadError

from trustgraph.api import LoadError

Data loading error


LookupError

from trustgraph.api import LookupError

Lookup/search error


NLPQueryError

from trustgraph.api import NLPQueryError

NLP query service error


ObjectsQueryError

from trustgraph.api import ObjectsQueryError

Objects query service error


RequestError

from trustgraph.api import RequestError

Request processing error


StructuredQueryError

from trustgraph.api import StructuredQueryError

Structured query service error


UnexpectedError

from trustgraph.api import UnexpectedError

Unexpected/unknown error


ApplicationException

from trustgraph.api import ApplicationException

Base class for all TrustGraph service errors