TrustGraph Python API Reference
Installation
pip install trustgraph
Quick Start
All classes and types are imported from the trustgraph.api package:
from trustgraph.api import Api, Triple, ConfigKey
# Create API client
api = Api(url="http://localhost:8088/")
# Get a flow instance
flow = api.flow().id("default")
# Execute a graph RAG query
response = flow.graph_rag(
query="What are the main topics?",
user="trustgraph",
collection="default"
)
Table of Contents
Core
Flow Clients
WebSocket Clients
Bulk Operations
Metrics
Data Types
- Triple
- ConfigKey
- ConfigValue
- DocumentMetadata
- ProcessingMetadata
- CollectionMetadata
- StreamingChunk
- AgentThought
- AgentObservation
- AgentAnswer
- RAGChunk
Exceptions
- ProtocolException
- TrustGraphException
- AgentError
- ConfigError
- DocumentRagError
- FlowError
- GatewayError
- GraphRagError
- LLMError
- LoadError
- LookupError
- NLPQueryError
- ObjectsQueryError
- RequestError
- StructuredQueryError
- UnexpectedError
- ApplicationException
Api
from trustgraph.api import Api
Main TrustGraph API client for synchronous and asynchronous operations.
This class provides access to all TrustGraph services including flow management, knowledge graph operations, document processing, RAG queries, and more. It supports both REST-based and WebSocket-based communication patterns.
The client can be used as a context manager for automatic resource cleanup: python with Api(url="http://localhost:8088/") as api: result = api.flow().id("default").graph_rag(query="test")
Methods
__aenter__(self)
Enter asynchronous context manager.
__aexit__(self, *args)
Exit asynchronous context manager and close connections.
__enter__(self)
Enter synchronous context manager.
__exit__(self, *args)
Exit synchronous context manager and close connections.
__init__(self, url='http://localhost:8088/', timeout=60, token: Optional[str] = None)
Initialize the TrustGraph API client.
Arguments:
url: Base URL for TrustGraph API (default: “http://localhost:8088/”)timeout: Request timeout in seconds (default: 60)token: Optional bearer token for authentication
Example:
# Local development
api = Api()
# Production with authentication
api = Api(
url="https://trustgraph.example.com/",
timeout=120,
token="your-api-token"
)
aclose(self)
Close all asynchronous client connections.
This method closes async WebSocket, bulk operation, and flow connections. It is automatically called when exiting an async context manager.
Example:
api = Api()
async_socket = api.async_socket()
# ... use async_socket
await api.aclose() # Clean up connections
# Or use async context manager (automatic cleanup)
async with Api() as api:
async_socket = api.async_socket()
# ... use async_socket
# Automatically closed
async_bulk(self)
Get an asynchronous bulk operations client.
Provides async/await style bulk import/export operations via WebSocket for efficient handling of large datasets.
Returns: AsyncBulkClient: Asynchronous bulk operations client
Example:
async_bulk = api.async_bulk()
# Export triples asynchronously
async for triple in async_bulk.export_triples(flow="default"):
print(f"{triple.s} {triple.p} {triple.o}")
# Import with async generator
async def triple_gen():
yield Triple(s="subj", p="pred", o="obj")
# ... more triples
await async_bulk.import_triples(
flow="default",
triples=triple_gen()
)
async_flow(self)
Get an asynchronous REST-based flow client.
Provides async/await style access to flow operations. This is preferred for async Python applications and frameworks (FastAPI, aiohttp, etc.).
Returns: AsyncFlow: Asynchronous flow client
Example:
async_flow = api.async_flow()
# List flows
flow_ids = await async_flow.list()
# Execute operations
instance = async_flow.id("default")
result = await instance.text_completion(
system="You are helpful",
prompt="Hello"
)
async_metrics(self)
Get an asynchronous metrics client.
Provides async/await style access to Prometheus metrics.
Returns: AsyncMetrics: Asynchronous metrics client
Example:
async_metrics = api.async_metrics()
prometheus_text = await async_metrics.get()
print(prometheus_text)
async_socket(self)
Get an asynchronous WebSocket client for streaming operations.
Provides async/await style WebSocket access with streaming support. This is the preferred method for async streaming in Python.
Returns: AsyncSocketClient: Asynchronous WebSocket client
Example:
async_socket = api.async_socket()
flow = async_socket.flow("default")
# Stream agent responses
async for chunk in flow.agent(
question="Explain quantum computing",
user="trustgraph",
streaming=True
):
if hasattr(chunk, 'content'):
print(chunk.content, end='', flush=True)
bulk(self)
Get a synchronous bulk operations client for import/export.
Bulk operations allow efficient transfer of large datasets via WebSocket connections, including triples, embeddings, entity contexts, and objects.
Returns: BulkClient: Synchronous bulk operations client
Example:
bulk = api.bulk()
# Export triples
for triple in bulk.export_triples(flow="default"):
print(f"{triple.s} {triple.p} {triple.o}")
# Import triples
def triple_generator():
yield Triple(s="subj", p="pred", o="obj")
# ... more triples
bulk.import_triples(flow="default", triples=triple_generator())
close(self)
Close all synchronous client connections.
This method closes WebSocket and bulk operation connections. It is automatically called when exiting a context manager.
Example:
api = Api()
socket = api.socket()
# ... use socket
api.close() # Clean up connections
# Or use context manager (automatic cleanup)
with Api() as api:
socket = api.socket()
# ... use socket
# Automatically closed
collection(self)
Get a Collection client for managing data collections.
Collections organize documents and knowledge graph data into logical groupings for isolation and access control.
Returns: Collection: Collection management client
Example:
collection = api.collection()
# List collections
colls = collection.list_collections(user="trustgraph")
# Update collection metadata
collection.update_collection(
user="trustgraph",
collection="default",
name="Default Collection",
description="Main data collection"
)
config(self)
Get a Config client for managing configuration settings.
Returns: Config: Configuration management client
Example:
config = api.config()
# Get configuration values
values = config.get([ConfigKey(type="llm", key="model")])
# Set configuration
config.put([ConfigValue(type="llm", key="model", value="gpt-4")])
flow(self)
Get a Flow client for managing and interacting with flows.
Flows are the primary execution units in TrustGraph, providing access to services like agents, RAG queries, embeddings, and document processing.
Returns: Flow: Flow management client
Example:
flow_client = api.flow()
# List available blueprints
blueprints = flow_client.list_blueprints()
# Get a specific flow instance
flow_instance = flow_client.id("default")
response = flow_instance.text_completion(
system="You are helpful",
prompt="Hello"
)
knowledge(self)
Get a Knowledge client for managing knowledge graph cores.
Returns: Knowledge: Knowledge graph management client
Example:
knowledge = api.knowledge()
# List available KG cores
cores = knowledge.list_kg_cores(user="trustgraph")
# Load a KG core
knowledge.load_kg_core(id="core-123", user="trustgraph")
library(self)
Get a Library client for document management.
The library provides document storage, metadata management, and processing workflow coordination.
Returns: Library: Document library management client
Example:
library = api.library()
# Add a document
library.add_document(
document=b"Document content",
id="doc-123",
metadata=[],
user="trustgraph",
title="My Document",
comments="Test document"
)
# List documents
docs = library.get_documents(user="trustgraph")
metrics(self)
Get a synchronous metrics client for monitoring.
Retrieves Prometheus-formatted metrics from the TrustGraph service for monitoring and observability.
Returns: Metrics: Synchronous metrics client
Example:
metrics = api.metrics()
prometheus_text = metrics.get()
print(prometheus_text)
request(self, path, request)
Make a low-level REST API request.
This method is primarily for internal use but can be used for direct API access when needed.
Arguments:
path: API endpoint path (relative to base URL)request: Request payload as a dictionary
Returns: dict: Response object
Raises:
ProtocolException: If the response status is not 200 or response is not JSONApplicationException: If the response contains an error
Example:
response = api.request("flow", {
"operation": "list-flows"
})
socket(self)
Get a synchronous WebSocket client for streaming operations.
WebSocket connections provide streaming support for real-time responses from agents, RAG queries, and text completions. This method returns a synchronous wrapper around the WebSocket protocol.
Returns: SocketClient: Synchronous WebSocket client
Example:
socket = api.socket()
flow = socket.flow("default")
# Stream agent responses
for chunk in flow.agent(
question="Explain quantum computing",
user="trustgraph",
streaming=True
):
if hasattr(chunk, 'content'):
print(chunk.content, end='', flush=True)
Flow
from trustgraph.api import Flow
Flow management client for blueprint and flow instance operations.
This class provides methods for managing flow blueprints (templates) and flow instances (running flows). Blueprints define the structure and parameters of flows, while instances represent active flows that can execute services.
Methods
__init__(self, api)
Initialize Flow client.
Arguments:
api: Parent Api instance for making requests
delete_blueprint(self, blueprint_name)
Delete a flow blueprint.
Arguments:
blueprint_name: Name of the blueprint to delete
Example:
api.flow().delete_blueprint("old-blueprint")
get(self, id)
Get the definition of a running flow instance.
Arguments:
id: Flow instance ID
Returns: dict: Flow instance definition
Example:
flow_def = api.flow().get("default")
print(flow_def)
get_blueprint(self, blueprint_name)
Get a flow blueprint definition by name.
Arguments:
blueprint_name: Name of the blueprint to retrieve
Returns: dict: Blueprint definition as a dictionary
Example:
blueprint = api.flow().get_blueprint("default")
print(blueprint) # Blueprint configuration
id(self, id='default')
Get a FlowInstance for executing operations on a specific flow.
Arguments:
id: Flow identifier (default: “default”)
Returns: FlowInstance: Flow instance for service operations
Example:
flow = api.flow().id("my-flow")
response = flow.text_completion(
system="You are helpful",
prompt="Hello"
)
list(self)
List all active flow instances.
Returns: list[str]: List of flow instance IDs
Example:
flows = api.flow().list()
print(flows) # ['default', 'flow-1', 'flow-2', ...]
list_blueprints(self)
List all available flow blueprints.
Returns: list[str]: List of blueprint names
Example:
blueprints = api.flow().list_blueprints()
print(blueprints) # ['default', 'custom-flow', ...]
put_blueprint(self, blueprint_name, definition)
Create or update a flow blueprint.
Arguments:
blueprint_name: Name for the blueprintdefinition: Blueprint definition dictionary
Example:
definition = {
"services": ["text-completion", "graph-rag"],
"parameters": {"model": "gpt-4"}
}
api.flow().put_blueprint("my-blueprint", definition)
request(self, path=None, request=None)
Make a flow-scoped API request.
Arguments:
path: Optional path suffix for flow endpointsrequest: Request payload dictionary
Returns: dict: Response object
Raises:
RuntimeError: If request parameter is not specified
start(self, blueprint_name, id, description, parameters=None)
Start a new flow instance from a blueprint.
Arguments:
blueprint_name: Name of the blueprint to instantiateid: Unique identifier for the flow instancedescription: Human-readable descriptionparameters: Optional parameters dictionary
Example:
api.flow().start(
blueprint_name="default",
id="my-flow",
description="My custom flow",
parameters={"model": "gpt-4"}
)
stop(self, id)
Stop a running flow instance.
Arguments:
id: Flow instance ID to stop
Example:
api.flow().stop("my-flow")
FlowInstance
from trustgraph.api import FlowInstance
Flow instance client for executing services on a specific flow.
This class provides access to all TrustGraph services including:
- Text completion and embeddings
- Agent operations with state management
- Graph and document RAG queries
- Knowledge graph operations (triples, objects)
- Document loading and processing
- Natural language to GraphQL query conversion
- Structured data analysis and schema detection
- MCP tool execution
- Prompt templating
Services are accessed through a running flow instance identified by ID.
Methods
__init__(self, api, id)
Initialize FlowInstance.
Arguments:
api: Parent Flow clientid: Flow instance identifier
agent(self, question, user='trustgraph', state=None, group=None, history=None)
Execute an agent operation with reasoning and tool use capabilities.
Agents can perform multi-step reasoning, use tools, and maintain conversation state across interactions. This is a synchronous non-streaming version.
Arguments:
question: User question or instructionuser: User identifier (default: “trustgraph”)state: Optional state dictionary for stateful conversationsgroup: Optional group identifier for multi-user contextshistory: Optional conversation history as list of message dicts
Returns: str: Agent’s final answer
Example:
flow = api.flow().id("default")
# Simple question
answer = flow.agent(
question="What is the capital of France?",
user="trustgraph"
)
# With conversation history
history = [
{"role": "user", "content": "Hello"},
{"role": "assistant", "content": "Hi! How can I help?"}
]
answer = flow.agent(
question="Tell me about Paris",
user="trustgraph",
history=history
)
detect_type(self, sample)
Detect the data type of a structured data sample.
Arguments:
sample: Data sample to analyze (string content)
Returns: dict with detected_type, confidence, and optional metadata
diagnose_data(self, sample, schema_name=None, options=None)
Perform combined data diagnosis: detect type and generate descriptor.
Arguments:
sample: Data sample to analyze (string content)schema_name: Optional target schema name for descriptor generationoptions: Optional parameters (e.g., delimiter for CSV)
Returns: dict with detected_type, confidence, descriptor, and metadata
document_rag(self, query, user='trustgraph', collection='default', doc_limit=10)
Execute document-based Retrieval-Augmented Generation (RAG) query.
Document RAG uses vector embeddings to find relevant document chunks, then generates a response using an LLM with those chunks as context.
Arguments:
query: Natural language queryuser: User/keyspace identifier (default: “trustgraph”)collection: Collection identifier (default: “default”)doc_limit: Maximum document chunks to retrieve (default: 10)
Returns: str: Generated response incorporating document context
Example:
flow = api.flow().id("default")
response = flow.document_rag(
query="Summarize the key findings",
user="trustgraph",
collection="research-papers",
doc_limit=5
)
print(response)
embeddings(self, text)
Generate vector embeddings for text.
Converts text into dense vector representations suitable for semantic search and similarity comparison.
Arguments:
text: Input text to embed
Returns: list[float]: Vector embedding
Example:
flow = api.flow().id("default")
vectors = flow.embeddings("quantum computing")
print(f"Embedding dimension: {len(vectors)}")
generate_descriptor(self, sample, data_type, schema_name, options=None)
Generate a descriptor for structured data mapping to a specific schema.
Arguments:
sample: Data sample to analyze (string content)data_type: Data type (csv, json, xml)schema_name: Target schema name for descriptor generationoptions: Optional parameters (e.g., delimiter for CSV)
Returns: dict with descriptor and metadata
graph_embeddings_query(self, text, user, collection, limit=10)
Query knowledge graph entities using semantic similarity.
Finds entities in the knowledge graph whose descriptions are semantically similar to the input text, using vector embeddings.
Arguments:
text: Query text for semantic searchuser: User/keyspace identifiercollection: Collection identifierlimit: Maximum number of results (default: 10)
Returns: dict: Query results with similar entities
Example:
flow = api.flow().id("default")
results = flow.graph_embeddings_query(
text="physicist who discovered radioactivity",
user="trustgraph",
collection="scientists",
limit=5
)
graph_rag(self, query, user='trustgraph', collection='default', entity_limit=50, triple_limit=30, max_subgraph_size=150, max_path_length=2)
Execute graph-based Retrieval-Augmented Generation (RAG) query.
Graph RAG uses knowledge graph structure to find relevant context by traversing entity relationships, then generates a response using an LLM.
Arguments:
query: Natural language queryuser: User/keyspace identifier (default: “trustgraph”)collection: Collection identifier (default: “default”)entity_limit: Maximum entities to retrieve (default: 50)triple_limit: Maximum triples per entity (default: 30)max_subgraph_size: Maximum total triples in subgraph (default: 150)max_path_length: Maximum traversal depth (default: 2)
Returns: str: Generated response incorporating graph context
Example:
flow = api.flow().id("default")
response = flow.graph_rag(
query="Tell me about Marie Curie's discoveries",
user="trustgraph",
collection="scientists",
entity_limit=20,
max_path_length=3
)
print(response)
load_document(self, document, id=None, metadata=None, user=None, collection=None)
Load a binary document for processing.
Uploads a document (PDF, DOCX, images, etc.) for extraction and processing through the flow’s document pipeline.
Arguments:
document: Document content as bytesid: Optional document identifier (auto-generated if None)metadata: Optional metadata (list of Triples or object with emit method)user: User/keyspace identifier (optional)collection: Collection identifier (optional)
Returns: dict: Processing response
Raises:
RuntimeError: If metadata is provided without id
Example:
flow = api.flow().id("default")
# Load a PDF document
with open("research.pdf", "rb") as f:
result = flow.load_document(
document=f.read(),
id="research-001",
user="trustgraph",
collection="papers"
)
load_text(self, text, id=None, metadata=None, charset='utf-8', user=None, collection=None)
Load text content for processing.
Uploads text content for extraction and processing through the flow’s text pipeline.
Arguments:
text: Text content as bytesid: Optional document identifier (auto-generated if None)metadata: Optional metadata (list of Triples or object with emit method)charset: Character encoding (default: “utf-8”)user: User/keyspace identifier (optional)collection: Collection identifier (optional)
Returns: dict: Processing response
Raises:
RuntimeError: If metadata is provided without id
Example:
flow = api.flow().id("default")
# Load text content
text_content = b"This is the document content..."
result = flow.load_text(
text=text_content,
id="text-001",
charset="utf-8",
user="trustgraph",
collection="documents"
)
mcp_tool(self, name, parameters={})
Execute a Model Context Protocol (MCP) tool.
MCP tools provide extensible functionality for agents and workflows, allowing integration with external systems and services.
Arguments:
name: Tool name/identifierparameters: Tool parameters dictionary (default: {})
Returns: str or dict: Tool execution result
Raises:
ProtocolException: If response format is invalid
Example:
flow = api.flow().id("default")
# Execute a tool
result = flow.mcp_tool(
name="search-web",
parameters={"query": "latest AI news", "limit": 5}
)
nlp_query(self, question, max_results=100)
Convert a natural language question to a GraphQL query.
Arguments:
question: Natural language questionmax_results: Maximum number of results to return (default: 100)
Returns: dict with graphql_query, variables, detected_schemas, confidence
objects_query(self, query, user='trustgraph', collection='default', variables=None, operation_name=None)
Execute a GraphQL query against structured objects in the knowledge graph.
Queries structured data using GraphQL syntax, allowing complex queries with filtering, aggregation, and relationship traversal.
Arguments:
query: GraphQL query stringuser: User/keyspace identifier (default: “trustgraph”)collection: Collection identifier (default: “default”)variables: Optional query variables dictionaryoperation_name: Optional operation name for multi-operation documents
Returns: dict: GraphQL response with ‘data’, ‘errors’, and/or ‘extensions’ fields
Raises:
ProtocolException: If system-level error occurs
Example:
flow = api.flow().id("default")
# Simple query
query = '''
{
scientists(limit: 10) {
name
field
discoveries
}
}
'''
result = flow.objects_query(
query=query,
user="trustgraph",
collection="scientists"
)
# Query with variables
query = '''
query GetScientist($name: String!) {
scientists(name: $name) {
name
nobelPrizes
}
}
'''
result = flow.objects_query(
query=query,
variables={"name": "Marie Curie"}
)
prompt(self, id, variables)
Execute a prompt template with variable substitution.
Prompt templates allow reusable prompt patterns with dynamic variable substitution, useful for consistent prompt engineering.
Arguments:
id: Prompt template identifiervariables: Dictionary of variable name to value mappings
Returns: str or dict: Rendered prompt result (text or structured object)
Raises:
ProtocolException: If response format is invalid
Example:
flow = api.flow().id("default")
# Text template
result = flow.prompt(
id="summarize-template",
variables={"topic": "quantum computing", "length": "brief"}
)
# Structured template
result = flow.prompt(
id="extract-entities",
variables={"text": "Marie Curie won Nobel Prizes"}
)
request(self, path, request)
Make a service request on this flow instance.
Arguments:
path: Service path (e.g., “service/text-completion”)request: Request payload dictionary
Returns: dict: Service response
schema_selection(self, sample, options=None)
Select matching schemas for a data sample using prompt analysis.
Arguments:
sample: Data sample to analyze (string content)options: Optional parameters
Returns: dict with schema_matches array and metadata
structured_query(self, question, user='trustgraph', collection='default')
Execute a natural language question against structured data. Combines NLP query conversion and GraphQL execution.
Arguments:
question: Natural language questionuser: Cassandra keyspace identifier (default: “trustgraph”)collection: Data collection identifier (default: “default”)
Returns: dict with data and optional errors
text_completion(self, system, prompt)
Execute text completion using the flow’s LLM.
Arguments:
system: System prompt defining the assistant’s behaviorprompt: User prompt/question
Returns: str: Generated response text
Example:
flow = api.flow().id("default")
response = flow.text_completion(
system="You are a helpful assistant",
prompt="What is quantum computing?"
)
print(response)
triples_query(self, s=None, p=None, o=None, user=None, collection=None, limit=10000)
Query knowledge graph triples using pattern matching.
Searches for RDF triples matching the given subject, predicate, and/or object patterns. Unspecified parameters act as wildcards.
Arguments:
s: Subject URI (optional, use None for wildcard)p: Predicate URI (optional, use None for wildcard)o: Object URI or Literal (optional, use None for wildcard)user: User/keyspace identifier (optional)collection: Collection identifier (optional)limit: Maximum results to return (default: 10000)
Returns: list[Triple]: List of matching Triple objects
Raises:
RuntimeError: If s or p is not a Uri, or o is not Uri/Literal
Example:
from trustgraph.knowledge import Uri, Literal
flow = api.flow().id("default")
# Find all triples about a specific subject
triples = flow.triples_query(
s=Uri("http://example.org/person/marie-curie"),
user="trustgraph",
collection="scientists"
)
# Find all instances of a specific relationship
triples = flow.triples_query(
p=Uri("http://example.org/ontology/discovered"),
limit=100
)
AsyncFlow
from trustgraph.api import AsyncFlow
Asynchronous REST-based flow interface
Methods
__init__(self, url: str, timeout: int, token: Optional[str]) -> None
Initialize self. See help(type(self)) for accurate signature.
aclose(self) -> None
Close connection (cleanup handled by aiohttp session)
delete_class(self, class_name: str)
Delete flow class
get(self, id: str) -> Dict[str, Any]
Get flow definition
get_class(self, class_name: str) -> Dict[str, Any]
Get flow class definition
id(self, flow_id: str)
Get async flow instance
list(self) -> List[str]
List all flows
list_classes(self) -> List[str]
List flow classes
put_class(self, class_name: str, definition: Dict[str, Any])
Create/update flow class
request(self, path: str, request_data: Dict[str, Any]) -> Dict[str, Any]
Make async HTTP request to Gateway API
start(self, class_name: str, id: str, description: str, parameters: Optional[Dict] = None)
Start a flow
stop(self, id: str)
Stop a flow
AsyncFlowInstance
from trustgraph.api import AsyncFlowInstance
Asynchronous REST flow instance
Methods
__init__(self, flow: trustgraph.api.async_flow.AsyncFlow, flow_id: str)
Initialize self. See help(type(self)) for accurate signature.
agent(self, question: str, user: str, state: Optional[Dict] = None, group: Optional[str] = None, history: Optional[List] = None, **kwargs: Any) -> Dict[str, Any]
Execute agent (non-streaming, use async_socket for streaming)
document_rag(self, query: str, user: str, collection: str, doc_limit: int = 10, **kwargs: Any) -> str
Document RAG (non-streaming, use async_socket for streaming)
embeddings(self, text: str, **kwargs: Any)
Generate text embeddings
graph_embeddings_query(self, text: str, user: str, collection: str, limit: int = 10, **kwargs: Any)
Query graph embeddings for semantic search
graph_rag(self, query: str, user: str, collection: str, max_subgraph_size: int = 1000, max_subgraph_count: int = 5, max_entity_distance: int = 3, **kwargs: Any) -> str
Graph RAG (non-streaming, use async_socket for streaming)
objects_query(self, query: str, user: str, collection: str, variables: Optional[Dict] = None, operation_name: Optional[str] = None, **kwargs: Any)
GraphQL query
request(self, service: str, request_data: Dict[str, Any]) -> Dict[str, Any]
Make request to flow-scoped service
text_completion(self, system: str, prompt: str, **kwargs: Any) -> str
Text completion (non-streaming, use async_socket for streaming)
triples_query(self, s=None, p=None, o=None, user=None, collection=None, limit=100, **kwargs: Any)
Triple pattern query
SocketClient
from trustgraph.api import SocketClient
Synchronous WebSocket client (wraps async websockets library)
Methods
__init__(self, url: str, timeout: int, token: Optional[str]) -> None
Initialize self. See help(type(self)) for accurate signature.
close(self) -> None
Close WebSocket connection
flow(self, flow_id: str) -> 'SocketFlowInstance'
Get flow instance for WebSocket operations
SocketFlowInstance
from trustgraph.api import SocketFlowInstance
Synchronous WebSocket flow instance with same interface as REST FlowInstance
Methods
__init__(self, client: trustgraph.api.socket_client.SocketClient, flow_id: str) -> None
Initialize self. See help(type(self)) for accurate signature.
agent(self, question: str, user: str, state: Optional[Dict[str, Any]] = None, group: Optional[str] = None, history: Optional[List[Dict[str, Any]]] = None, streaming: bool = False, **kwargs: Any) -> Union[Dict[str, Any], Iterator[trustgraph.api.types.StreamingChunk]]
Agent with optional streaming
document_rag(self, query: str, user: str, collection: str, doc_limit: int = 10, streaming: bool = False, **kwargs: Any) -> Union[str, Iterator[str]]
Document RAG with optional streaming
embeddings(self, text: str, **kwargs: Any) -> Dict[str, Any]
Generate text embeddings
graph_embeddings_query(self, text: str, user: str, collection: str, limit: int = 10, **kwargs: Any) -> Dict[str, Any]
Query graph embeddings for semantic search
graph_rag(self, query: str, user: str, collection: str, max_subgraph_size: int = 1000, max_subgraph_count: int = 5, max_entity_distance: int = 3, streaming: bool = False, **kwargs: Any) -> Union[str, Iterator[str]]
Graph RAG with optional streaming
mcp_tool(self, name: str, parameters: Dict[str, Any], **kwargs: Any) -> Dict[str, Any]
Execute MCP tool
objects_query(self, query: str, user: str, collection: str, variables: Optional[Dict[str, Any]] = None, operation_name: Optional[str] = None, **kwargs: Any) -> Dict[str, Any]
GraphQL query
prompt(self, id: str, variables: Dict[str, str], streaming: bool = False, **kwargs: Any) -> Union[str, Iterator[str]]
Execute prompt with optional streaming
text_completion(self, system: str, prompt: str, streaming: bool = False, **kwargs) -> Union[str, Iterator[str]]
Text completion with optional streaming
triples_query(self, s: Optional[str] = None, p: Optional[str] = None, o: Optional[str] = None, user: Optional[str] = None, collection: Optional[str] = None, limit: int = 100, **kwargs: Any) -> Dict[str, Any]
Triple pattern query
AsyncSocketClient
from trustgraph.api import AsyncSocketClient
Asynchronous WebSocket client
Methods
__init__(self, url: str, timeout: int, token: Optional[str])
Initialize self. See help(type(self)) for accurate signature.
aclose(self)
Close WebSocket connection
flow(self, flow_id: str)
Get async flow instance for WebSocket operations
AsyncSocketFlowInstance
from trustgraph.api import AsyncSocketFlowInstance
Asynchronous WebSocket flow instance
Methods
__init__(self, client: trustgraph.api.async_socket_client.AsyncSocketClient, flow_id: str)
Initialize self. See help(type(self)) for accurate signature.
agent(self, question: str, user: str, state: Optional[Dict[str, Any]] = None, group: Optional[str] = None, history: Optional[list] = None, streaming: bool = False, **kwargs) -> Union[Dict[str, Any], AsyncIterator]
Agent with optional streaming
document_rag(self, query: str, user: str, collection: str, doc_limit: int = 10, streaming: bool = False, **kwargs)
Document RAG with optional streaming
embeddings(self, text: str, **kwargs)
Generate text embeddings
graph_embeddings_query(self, text: str, user: str, collection: str, limit: int = 10, **kwargs)
Query graph embeddings for semantic search
graph_rag(self, query: str, user: str, collection: str, max_subgraph_size: int = 1000, max_subgraph_count: int = 5, max_entity_distance: int = 3, streaming: bool = False, **kwargs)
Graph RAG with optional streaming
mcp_tool(self, name: str, parameters: Dict[str, Any], **kwargs)
Execute MCP tool
objects_query(self, query: str, user: str, collection: str, variables: Optional[Dict] = None, operation_name: Optional[str] = None, **kwargs)
GraphQL query
prompt(self, id: str, variables: Dict[str, str], streaming: bool = False, **kwargs)
Execute prompt with optional streaming
text_completion(self, system: str, prompt: str, streaming: bool = False, **kwargs)
Text completion with optional streaming
triples_query(self, s=None, p=None, o=None, user=None, collection=None, limit=100, **kwargs)
Triple pattern query
BulkClient
from trustgraph.api import BulkClient
Synchronous bulk operations client
Methods
__init__(self, url: str, timeout: int, token: Optional[str]) -> None
Initialize self. See help(type(self)) for accurate signature.
close(self) -> None
Close connections
export_document_embeddings(self, flow: str, **kwargs: Any) -> Iterator[Dict[str, Any]]
Bulk export document embeddings via WebSocket
export_entity_contexts(self, flow: str, **kwargs: Any) -> Iterator[Dict[str, Any]]
Bulk export entity contexts via WebSocket
export_graph_embeddings(self, flow: str, **kwargs: Any) -> Iterator[Dict[str, Any]]
Bulk export graph embeddings via WebSocket
export_triples(self, flow: str, **kwargs: Any) -> Iterator[trustgraph.api.types.Triple]
Bulk export triples via WebSocket
import_document_embeddings(self, flow: str, embeddings: Iterator[Dict[str, Any]], **kwargs: Any) -> None
Bulk import document embeddings via WebSocket
import_entity_contexts(self, flow: str, contexts: Iterator[Dict[str, Any]], **kwargs: Any) -> None
Bulk import entity contexts via WebSocket
import_graph_embeddings(self, flow: str, embeddings: Iterator[Dict[str, Any]], **kwargs: Any) -> None
Bulk import graph embeddings via WebSocket
import_objects(self, flow: str, objects: Iterator[Dict[str, Any]], **kwargs: Any) -> None
Bulk import objects via WebSocket
import_triples(self, flow: str, triples: Iterator[trustgraph.api.types.Triple], **kwargs: Any) -> None
Bulk import triples via WebSocket
AsyncBulkClient
from trustgraph.api import AsyncBulkClient
Asynchronous bulk operations client
Methods
__init__(self, url: str, timeout: int, token: Optional[str]) -> None
Initialize self. See help(type(self)) for accurate signature.
aclose(self) -> None
Close connections
export_document_embeddings(self, flow: str, **kwargs: Any) -> AsyncIterator[Dict[str, Any]]
Bulk export document embeddings via WebSocket
export_entity_contexts(self, flow: str, **kwargs: Any) -> AsyncIterator[Dict[str, Any]]
Bulk export entity contexts via WebSocket
export_graph_embeddings(self, flow: str, **kwargs: Any) -> AsyncIterator[Dict[str, Any]]
Bulk export graph embeddings via WebSocket
export_triples(self, flow: str, **kwargs: Any) -> AsyncIterator[trustgraph.api.types.Triple]
Bulk export triples via WebSocket
import_document_embeddings(self, flow: str, embeddings: AsyncIterator[Dict[str, Any]], **kwargs: Any) -> None
Bulk import document embeddings via WebSocket
import_entity_contexts(self, flow: str, contexts: AsyncIterator[Dict[str, Any]], **kwargs: Any) -> None
Bulk import entity contexts via WebSocket
import_graph_embeddings(self, flow: str, embeddings: AsyncIterator[Dict[str, Any]], **kwargs: Any) -> None
Bulk import graph embeddings via WebSocket
import_objects(self, flow: str, objects: AsyncIterator[Dict[str, Any]], **kwargs: Any) -> None
Bulk import objects via WebSocket
import_triples(self, flow: str, triples: AsyncIterator[trustgraph.api.types.Triple], **kwargs: Any) -> None
Bulk import triples via WebSocket
Metrics
from trustgraph.api import Metrics
Synchronous metrics client
Methods
__init__(self, url: str, timeout: int, token: Optional[str]) -> None
Initialize self. See help(type(self)) for accurate signature.
get(self) -> str
Get Prometheus metrics as text
AsyncMetrics
from trustgraph.api import AsyncMetrics
Asynchronous metrics client
Methods
__init__(self, url: str, timeout: int, token: Optional[str]) -> None
Initialize self. See help(type(self)) for accurate signature.
aclose(self) -> None
Close connections
get(self) -> str
Get Prometheus metrics as text
Triple
from trustgraph.api import Triple
RDF triple representing a knowledge graph statement.
Fields:
s: <class ‘str’>p: <class ‘str’>o: <class ‘str’>
Methods
__init__(self, s: str, p: str, o: str) -> None
Initialize self. See help(type(self)) for accurate signature.
ConfigKey
from trustgraph.api import ConfigKey
Configuration key identifier.
Fields:
type: <class ‘str’>key: <class ‘str’>
Methods
__init__(self, type: str, key: str) -> None
Initialize self. See help(type(self)) for accurate signature.
ConfigValue
from trustgraph.api import ConfigValue
Configuration key-value pair.
Fields:
type: <class ‘str’>key: <class ‘str’>value: <class ‘str’>
Methods
__init__(self, type: str, key: str, value: str) -> None
Initialize self. See help(type(self)) for accurate signature.
DocumentMetadata
from trustgraph.api import DocumentMetadata
Metadata for a document in the library.
Fields:
id: <class ‘str’>time: <class ‘datetime.datetime’>kind: <class ‘str’>title: <class ‘str’>comments: <class ‘str’>metadata: typing.List[trustgraph.api.types.Triple]user: <class ‘str’>tags: typing.List[str]
Methods
__init__(self, id: str, time: datetime.datetime, kind: str, title: str, comments: str, metadata: List[trustgraph.api.types.Triple], user: str, tags: List[str]) -> None
Initialize self. See help(type(self)) for accurate signature.
ProcessingMetadata
from trustgraph.api import ProcessingMetadata
Metadata for an active document processing job.
Fields:
id: <class ‘str’>document_id: <class ‘str’>time: <class ‘datetime.datetime’>flow: <class ‘str’>user: <class ‘str’>collection: <class ‘str’>tags: typing.List[str]
Methods
__init__(self, id: str, document_id: str, time: datetime.datetime, flow: str, user: str, collection: str, tags: List[str]) -> None
Initialize self. See help(type(self)) for accurate signature.
CollectionMetadata
from trustgraph.api import CollectionMetadata
Metadata for a data collection.
Collections provide logical grouping and isolation for documents and knowledge graph data.
Attributes:
name: Human: readable collection name
Fields:
user: <class ‘str’>collection: <class ‘str’>name: <class ‘str’>description: <class ‘str’>tags: typing.List[str]
Methods
__init__(self, user: str, collection: str, name: str, description: str, tags: List[str]) -> None
Initialize self. See help(type(self)) for accurate signature.
StreamingChunk
from trustgraph.api import StreamingChunk
Base class for streaming response chunks.
Used for WebSocket-based streaming operations where responses are delivered incrementally as they are generated.
Fields:
content: <class ‘str’>end_of_message: <class ‘bool’>
Methods
__init__(self, content: str, end_of_message: bool = False) -> None
Initialize self. See help(type(self)) for accurate signature.
AgentThought
from trustgraph.api import AgentThought
Agent reasoning/thought process chunk.
Represents the agent’s internal reasoning or planning steps during execution. These chunks show how the agent is thinking about the problem.
Fields:
content: <class ‘str’>end_of_message: <class ‘bool’>chunk_type: <class ‘str’>
Methods
__init__(self, content: str, end_of_message: bool = False, chunk_type: str = 'thought') -> None
Initialize self. See help(type(self)) for accurate signature.
AgentObservation
from trustgraph.api import AgentObservation
Agent tool execution observation chunk.
Represents the result or observation from executing a tool or action. These chunks show what the agent learned from using tools.
Fields:
content: <class ‘str’>end_of_message: <class ‘bool’>chunk_type: <class ‘str’>
Methods
__init__(self, content: str, end_of_message: bool = False, chunk_type: str = 'observation') -> None
Initialize self. See help(type(self)) for accurate signature.
AgentAnswer
from trustgraph.api import AgentAnswer
Agent final answer chunk.
Represents the agent’s final response to the user’s query after completing its reasoning and tool use.
Attributes:
chunk_type: Always "final: answer”
Fields:
content: <class ‘str’>end_of_message: <class ‘bool’>chunk_type: <class ‘str’>end_of_dialog: <class ‘bool’>
Methods
__init__(self, content: str, end_of_message: bool = False, chunk_type: str = 'final-answer', end_of_dialog: bool = False) -> None
Initialize self. See help(type(self)) for accurate signature.
RAGChunk
from trustgraph.api import RAGChunk
RAG (Retrieval-Augmented Generation) streaming chunk.
Used for streaming responses from graph RAG, document RAG, text completion, and other generative services.
Fields:
content: <class ‘str’>end_of_message: <class ‘bool’>chunk_type: <class ‘str’>end_of_stream: <class ‘bool’>error: typing.Optional[typing.Dict[str, str]]
Methods
__init__(self, content: str, end_of_message: bool = False, chunk_type: str = 'rag', end_of_stream: bool = False, error: Optional[Dict[str, str]] = None) -> None
Initialize self. See help(type(self)) for accurate signature.
ProtocolException
from trustgraph.api import ProtocolException
Raised when WebSocket protocol errors occur
TrustGraphException
from trustgraph.api import TrustGraphException
Base class for all TrustGraph service errors
AgentError
from trustgraph.api import AgentError
Agent service error
ConfigError
from trustgraph.api import ConfigError
Configuration service error
DocumentRagError
from trustgraph.api import DocumentRagError
Document RAG retrieval error
FlowError
from trustgraph.api import FlowError
Flow management error
GatewayError
from trustgraph.api import GatewayError
API Gateway error
GraphRagError
from trustgraph.api import GraphRagError
Graph RAG retrieval error
LLMError
from trustgraph.api import LLMError
LLM service error
LoadError
from trustgraph.api import LoadError
Data loading error
LookupError
from trustgraph.api import LookupError
Lookup/search error
NLPQueryError
from trustgraph.api import NLPQueryError
NLP query service error
ObjectsQueryError
from trustgraph.api import ObjectsQueryError
Objects query service error
RequestError
from trustgraph.api import RequestError
Request processing error
StructuredQueryError
from trustgraph.api import StructuredQueryError
Structured query service error
UnexpectedError
from trustgraph.api import UnexpectedError
Unexpected/unknown error
ApplicationException
from trustgraph.api import ApplicationException
Base class for all TrustGraph service errors