Ontology RAG Using CLI
Use command-line tools to build Ontology RAG workflows with custom schemas
Advanced
30 min
- TrustGraph deployed (Quick Start)
- Familiarity with Ontology RAG concepts and OWL ontologies
Use CLI tools to import ontologies, extract structured knowledge, and query ontology-based knowledge graphs.
This guide covers the same Ontology RAG workflow as the Ontology RAG guide, but using command-line tools instead of the Workbench.
New to Ontology RAG? Read the Ontology RAG guide first to understand the concepts, workflow, and see visual examples.
This guide demonstrates:
- Loading ontologies via CLI
- Creating ontology-based flows
- Processing documents with schema-guided extraction
- Querying with Ontology RAG
Step-by-Step Guide
Step 1: Load Your Document
Download and load the example document:
wget -O phantom-cargo.md https://raw.githubusercontent.com/trustgraph-ai/example-data/refs/heads/main/tracking/operation-phantom-cargo.md
tg-add-library-document \
--name "PHANTOM CARGO" \
--description "Intelligence report: Operation PHANTOM CARGO" \
--tags 'maritime,intelligence,cargo,grey arms' \
--id https://trustgraph.ai/doc/phantom-cargo \
--kind text/plain \
phantom-cargo.md
Step 2: Load the Ontology
We’ll use the SSN/SOSA ontology (W3C standard for sensors and observations). For details about this ontology, see the Ontology RAG guide.
Download and install the ontology:
wget -O ssn-ontology.json https://raw.githubusercontent.com/trustgraph-ai/example-data/refs/heads/main/tracking/ssn-ontology.json
cat ssn-ontology.json | tg-put-config-item --type ontology --key ssn --stdin
Step 3: Create a Collection
Create an ‘intelligence’ collection:
tg-set-collection -n Intelligence -d 'Intelligence analysis' intelligence
Step 4: Create the Flow
Create an Ontology RAG flow:
tg-start-flow -n onto-rag -i onto-rag -d "Ontology RAG"
Step 5: Submit the Document for Processing
Submit the document for processing:
tg-start-library-processing \
--flow-id onto-rag \
--document-id https://trustgraph.ai/doc/phantom-cargo \
--collection intelligence \
--processing-id urn:processing-03
Step 6: Monitoring (Optional)
Processing can take time for large documents. For monitoring details, see the Ontology RAG guide monitoring section.
Step 7: Query with Ontology RAG
Query the ontology-based knowledge graph:
tg-invoke-graph-rag \
-f onto-rag -C intelligence \
-q 'What intelligence resources were using during the PHANTOM CARGO operation?'
Expected output:
The intelligence resources used during the PHANTOM CARGO operation were:
* SIGINT
* MASINT
* Electro-Optical HUMINT
* FININT
* AIS
* synthetic aperture radar (SAR)
* GPS coordinates
Explore visually: For graph exploration and ontology visualization, see the visual tools in the Ontology RAG guide.
Next Steps
Related CLI Commands
tg-put-config-item- Load ontologies and configurationtg-start-flow- Start processing flowstg-invoke-graph-rag- Query with Ontology RAG
Other Guides
- Ontology RAG (Workbench) - Visual walkthrough with ontology editor
- Graph RAG - Schema-free knowledge extraction
- Working with Context Cores - Package and share knowledge